
clac Documentation

Wesley Van Melle

Jan 25, 2019

Contents:

1 What is CLAC? 1
1.1 Getting Started . 1
1.2 API Reference . 3
1.3 Setting up a Development Environment . 6

2 Indices and tables 9

i

ii

CHAPTER 1

What is CLAC?

CLAC is a multi-level configuration management library for use by applications which require multi-source configu-
ration, such as multiple config files (which could have priority overriding based on location), environment variables,
command-line parameters, and default configuration shipped with the application itself.

The theory behind the tool is that the each of the configuration sources is a layer, and each layer has a priority
against the other layers, e.g. command-line options should override competing environment variables. The layers are
collected into a single object, and a single function call will search for the proper value in each layer, returning the
highest priority value.

1.1 Getting Started

First we install the library:

pip install clac

Next, we need to prepare each of our layers:

from clac import CLAC, DictLayer, DictStructure, EnvLayer

Get the dicts for each of the layers

rc-style files are usually flat keys, which could have dots in their names.
Google .pylintrc or .coveragerc for examples of rc-style config files.
rcfile = {

'lingua': 'franca',
'salt.pepper': 'oregano',
'foo': 'bar',

}
Create the layer with a recognizable name
rc_layer = DictLayer('rcfile', rcfile)

We can import toml or json directly into nested python dictionaries.

(continues on next page)

1

clac Documentation

(continued from previous page)

For this example we will assume that the following dict was imported
earlier.
toml_dict = {

'foo': 'baz',
'spam': {

'ham': 'eggs',
},
'salt': {

'pepper': 'cayenne',
},

}
This time, we need to split the names by the dots, since these dicts have
a nested-dict structure.
toml_layer = DictLayer('tomlfile', toml_dict, dot_strategy=DictStructure.Split)

For environment variables, we can instatiate a layer directly
env_layer = EnvLayer('env')

Now we can create the container for all of the layers
config = CLAC(rc_layer, toml_layer, env_layer)

We could also build the object incrementally, separate from instatiation.
Adding the rcfile layer first means that values from that rcfile values
will override competing values from the toml layer.
config = CLAC()
config.add_layers(rc_layer)
We can still add multiple layers at once.
config.add_layers(toml_layer, env_layer)

Now, we can check the various config entries.

'foo' is found in the rcfile first, so we get 'bar' instaed of 'baz'
assert config['foo'] == 'bar'
But we can double-check the toml file if we want, using the name of the
layer we want.
assert config.get('foo', layer_name='tomlfile') == 'baz'

'spam' is not found in the rcfile, so the CLAC checks the tomlfile
assert config['spam'] == {'ham': 'eggs'}

Be careful when searching on partial keys, since flat DictLayers cannot
support partial matching:

'salt' would be a partial match for rcfile, so toml file value is used
assert config['salt'] == {'pepper': 'cayenne'}
'salt.pepper' has an exact match in the rcfile, so we get that value
before the toml file.
assert config['salt.pepper'] == 'oregano

get() supports defaults and post-retrieval processing, but not at the same
time. Default values are *not* processed with the callback.

Here, we set the callback to str, but still get an int, because the value
was not found, and the callback was never executed. This return the
default value as-is.
assert config.get('missing', default=123, callback=str) == 123

2 Chapter 1. What is CLAC?

clac Documentation

1.2 API Reference

class clac.CLAC(*layers)
Configuration container/manager.

__init__() parameters are the same as add_layers().

add_layers(*layers)
Adds layers to the lookup set. Called by __init__()

Parameters layers – A FIFO list of ConfigLayer instances. The first layer in this list will be
the first layer queried.

build_lri()→ Set[Tuple[str, Any]]
Returns the Layer Resolution Index (LRI)

The LRI is a set of 2-tuples which contain the first layer that a key can be found in, and the key itself.

get(key: str, default: Any = None, layer_name: str = None, callback: Callable = None)→ Any
Gets values from config layers according to key.

Returns default if value is not found or LookupError is raised.

If layer_name is specified, the method will perform all of the same actions, but only against the layer
with the specified name. Must be a str or None. Defaults to None.

If callback is specified, the method will pass the retrieved value to the callback, and return the result.
If callback is None, the original result is returned as-is.

Warning: If the value is not found, callbackwill not be executed on the default value. Applications
should provide complete and prepared default values to the method.

Raises MissingLayer – if layer_name is specified but no layer with that name has been
added.

Returns The value retrieved from the config layers, or default if no entry was found.

Note: If an exception is desired instead of a default value, __getitem__ syntax
(clac_instance[key]) should be used instead. This will raise a NoConfigKey exception. How-
ever, the __getitem__ syntax does not support additional arguments. This means that only get() will
support defaults and coercion, and only __getitem__ will support exception bubbling.

insert_layers(*layers, raise_on_replace=True)
Inserts layers into the start of the lookup.

If any layer name already exists, it will be inserted in the new position instead of retaining its old position.
This can be used to reorder the priority of any or all of the layers. If a layer name is duplicated in the
provided layers parameter, then the first value is taken, and the others are silently ignored.

If any layer name conflicts are detected while moving old layers into the rebuilt lookup, the objects
are compared for identity. If the identities match, the new position of the layer is not overwritten
with the layer’s previous position. If the identities do not match, LayerOverwriteError is raised,
and the operation is cancelled, having no effect on the original lookup. This check is ignored if
raise_on_replace is False (default is True).

1.2. API Reference 3

clac Documentation

Warning: This function will rebuild the internal lookup, which can be expensive if there are a large
number of entries. However, having a large number of configuration sources is an unusual use case,
and should not be considered a major performance impact which needs optimization.

layers
A copy of the internal layer lookup.

names
Returns a set of all unique config keys from all layers.

remove_layer(name: str, error_ok: bool = True)
Remove layer name from the manager.

Parameters

• name – The name of the layer to be removed.

• error_ok – bool specificying whether to ignore errors. Defaults to True. Will check to
make sure layer is missing.

Raises MissingLayer if name is not found in lookup and error_ok is False

resolve(key: str)→ Tuple[str, Any]
Returns that name of the layer accessed, and the value retrieved.

Parameters key – The key to search for.

Raises NoConfigKey – key not in any layer.

Returns 2-tuple: (layer, value)

setdefault(key: str, default: Any = None)→ Any
Call BaseConfigLayer.set_default() on the first mutable layer.

class clac.BaseConfigLayer(name: str, mutable: bool = False)
Abstract Base class for ConfigLayer Implementation

This class cannot be used directly, and will raise TypeError if instantiated. Rather, it is meant to be subclassed
to perform its own application-specific configuration handling. For example, a subclass named ConfLayer
might be created to read UNIX-style configuration files.

Important: Because this class is based off of the stdlib collections.abc.Mapping abstract class, there are
abstract methods not defined in this class which must still be defined by subclasses.

Parameters

• name – The qualified name of the config layer instance. Will be used to look up the specified
layer by the CLAC. This name should not be changed after instantiation.

• mutable – bool representing whether the layer allows mutation. Readable using the
mutable() property.

assert_mutable()
Raises ImmutableLayer if layer is not mutable.

get(key: str, default=None)→ Any
Gets the value for the specified key

Returns default if key is not found.

4 Chapter 1. What is CLAC?

clac Documentation

mutable
Whether the layer instance is mutable or not.

This value is checked before all internal set-style calls. Any method which overrides __setitem__()
or setdefault() must manually perform the check by calling self.assert_mutable() with no
arguments.

name
The name of the layer.

The CLAC instance will use this name as a lookup key for all layer-specific operations. This will have no
effect on non-specific get and set -type calls.

names
Returns the full list of keys in the Layer

setdefault(key: str, default: Any = None)→ Any
If key is in the lookup, return its value.

If key is not in the lookup, insert key with a value of default and return default. default defaults
to None.

class clac.DictLayer(name: str, config_dict: Optional[dict] = None, mutable: bool = False,
dot_strategy: clac.core.DictStructure = <DictStructure.Flat: 2>)

A config layer based on the python dict type.

name Behaves the same as all other layers. See BaseConfigLayer for more details.

config_dict An optional mapping object which contains the initial state of the configuration layer.

mutable A boolean representing whether the layer should allow mutation.

dot_strategy One of the variants of the DictStructure enum. Defaults to DictStructure.Flat.

DictStructure.Split will assume a nested dict structure. Keys will be split by the . character.

DictStructure.Flat will assume a flat dict structure. Keys are not modified before querying the
underlying dict.

This example illustrates both usages

split = {
'a': {

'b': {
'c': 'd'

}
}

}

flat = {'a.b.c': 'd')

layer1 = DictLayer('name', split, dot_strategy=DictStructure.Split)
assert layer1['a.b.c'] == 'd'

layer2 = DictLayer('name', flat, dot_strategy=DictStructure.Flat)
assert layer2['a.b.c'] == 'd'

names
Returns a strategy-aware set of valid keys

class clac.DictStructure
Enum for DictLayer structuring strategy.

This enum class exposes two variants:

1.2. API Reference 5

clac Documentation

• Split

• Flat

See DictLayer for more info.

1.3 Setting up a Development Environment

This document explains how to set up a devlopment environment for the CLAC project.

1.3.1 A note about Makefiles

CLAC includes a Makefile to simplify the devlopment process. This allows commands to be run in a virtual environ-
ment without having to actually activate the environment in your own shell. To support this on Windows (which is the
real outlier) and other systems at the same time, the WORKON_HOME environment variable must be set, and must
NOT contain backslashes. This means that on my windows platforms, the virtualenv home directory must be set to
D:/dev/venv instead of D:\dev\venv.

1.3.2 Cloning the project

To clone the project, please follow the steps below (after reading the whole section to understand exactly what impact
it will have):

• Ensure you are cloning the correct project (i.e. cloning your fork instead of the project itself)

• git clone https://github.com/<yourusername>/clac

• make test

The make test command will create a new virtual environment using the current python interpreter as a base. The
environment will be stored in $WORKON_HOME/clac, and the full path to the executable will be written to a file
named .venv at the root of the project.

1.3.3 Confirming your changes

In order to prevent destabilization of the project, all changes must pass CI checks without fail. Changes will not be
accepted until this occurs. There are four checks which occur as of writing this:

• Unit testing through pytest - make test

• Code style/linting with pylint - make lint

• Static type analysis using mypy - make lint must pass the pylint check first for make to work.

• Building documentation powered by sphinx - make docs

If any one of these fails, your pull request will be rejected. If rejected, you must submit a patch to the pull request
which resolves the issue.

Additionally, if your change is an enhancement or bugfix to the codebase, it must be accompanied by passing,
coverage-proven unit tests. Changes without unit tests will not be accepted, but if you are unsure of how to unit
test your changes, submit anyway and the project owner will help you to write effective unit tests for your change.

6 Chapter 1. What is CLAC?

https://docs.pytest.org/en/stable/
https://www.pylint.org/
http://mypy-lang.org/
http://www.sphinx-doc.org/en/master/

clac Documentation

1.3.4 Working without make

If you cannot use make, or wish to setup your own environment in a different way, please follow the guide as-is, but
referencing this section for alternative executions to mimic make’s functionality.

This section will be written with the assumption that you understand how to configure your desired environment and
use it properly, and is being provided as a convenience. Additionally, all of these commands should be executed from
the project root.

pip install sections only need to be run once per environment.

make install pip install -e .

make install-dev pip install -e .[fulldev]

make test pip install -e .[test,cov] && pytest --cov clac tests && python -m
coverage html

make docs pip install -e .[docs] && sphinx-build -M html docs/source docs/build

make lint pip install -e .[lint] && pylint clac && mypy clac

1.3. Setting up a Development Environment 7

clac Documentation

8 Chapter 1. What is CLAC?

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

9

clac Documentation

10 Chapter 2. Indices and tables

Index

A
add_layers() (clac.CLAC method), 3
assert_mutable() (clac.BaseConfigLayer method), 4

B
BaseConfigLayer (class in clac), 4
build_lri() (clac.CLAC method), 3

C
CLAC (class in clac), 3

D
DictLayer (class in clac), 5
DictStructure (class in clac), 5

G
get() (clac.BaseConfigLayer method), 4
get() (clac.CLAC method), 3

I
insert_layers() (clac.CLAC method), 3

L
layers (clac.CLAC attribute), 4

M
mutable (clac.BaseConfigLayer attribute), 4

N
name (clac.BaseConfigLayer attribute), 5
names (clac.BaseConfigLayer attribute), 5
names (clac.CLAC attribute), 4
names (clac.DictLayer attribute), 5

R
remove_layer() (clac.CLAC method), 4
resolve() (clac.CLAC method), 4

S
setdefault() (clac.BaseConfigLayer method), 5
setdefault() (clac.CLAC method), 4

11

	What is CLAC?
	Getting Started
	API Reference
	Setting up a Development Environment

	Indices and tables

